The velocity distribution of outflows driven by choked jets in stellar envelopes

نویسندگان

چکیده

ABSTRACT Many stripped envelope supernovae (SNe) present a signature of high-velocity material responsible for broad absorption lines in the observed spectrum. These include SNe that are associated with long gamma-ray bursts (LGRBs) and low-luminosity GRBs (llGRBs), not GRBs. Recently it was suggested this originates from cocoon is driven by relativistic jet. In LGRBs, jet breaks out successfully stellar envelope, while llGRBs choked. Here we use numerical simulations to explore velocity distribution an outflow choked jet, its dependence on progenitor properties. We find all cases where too deep within star, carries roughly constant amount energy per logarithmic scale proper over wide range velocities, which depends mostly volume at time breakout. This universal property jets outflows, does exist outflows spherically symmetric explosions or when very star. therefore conclude (not deep) provide natural explanation fast seen early spectra properties could reveal information otherwise hidden jets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical hydrodynamic simulations of molecular outflows driven by Hammer jets

Very young protostars eject collimated jets of molecular gas. Although the protostars themselves are hidden, some of their properties are revealed through the jet dynamics. We here model velocity shear, precession, pulsation and spray within dense jets injected into less-dense molecular clouds. We investigate the Hammer Jet, for which extreme velocity variations as well as strong ripping and sp...

متن کامل

Stellar Outflows Driven by Magnetized Wide-Angle Winds

We present two-dimensional, cylindrically symmetric simulations of hydrodynamic and magnetohydrodynamic (MHD) wide-angle winds interacting with a collapsing environment. These simulations have direct relevance to young stellar objects (YSOs). The results may also be of use in the study of collimated outflows from proto-planetary and planetary nebulae. We study a range of wind configurations con...

متن کامل

Spectroscopy of Stellar Jets, Outflows, and Young Stellar Objects with the Infrared Space Observatory

The Infrared Space Observatory (ISO) was an extremely successful european space mission that gave us an unparallel view of the Universe in the infrared, and provided us with hundreds of observations of star forming regions and bipolar outflows. Three of the instrument teams, in charge of the infrared camera (CAM) and the two spectrometers at short and long wavelengths (SWS and LWS respectively)...

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

Two-component magnetohydrodynamical outflows around young stellar objects Interplay between stellar magnetospheric winds and disc-driven jets

Context. We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar magnetospheric winds coupled with discdriven jets where the resistive and viscous accretion disc is self-consistently described. Aims. These innovative MHD simulations are devoted to the study of the interplay between a stellar wind (having different ejection mass rates) and an MHD disc-driven jet em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2022

ISSN: ['0035-8711', '1365-8711', '1365-2966']

DOI: https://doi.org/10.1093/mnras/stac3640